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a b s t r a c t

The stability of the collinear libration points in the photogravitational elliptical three-body problem
is investigated. The distribution of the inner collinear libration points located between the principal
bodies in the system is revealed. A method of finding collinear libration points for particles with specified
reduction coefficients is given. Stability diagrams are constructed for an entire heterogeneous ensemble
of particles (cloud) at libration points, which, in particular, make it possible to trace cloud subdivision
scenarios. The characteristics (the number of clusters, the diameter of each cluster and the distances to
the components of a binary system) are determined for a binary star system similar to �–Centauri.

© 2010 Elsevier Ltd. All rights reserved.

1. Statement of the problem

In photogravitational celestial mechanics, the light pressure of a body (star) is taken into account along with the Newtonian forces of
attraction.1 In several cases the light flux is of such intensity that the light pressure force competes with the gravitational force and even
exceeds it in magnitude.

The light pressure force depends not only on the luminosity of the star, but also on the characteristics (geometric dimensions, density
and reflectivity) of the specific particle. The relation between the parameters of the star and the particle gives the reduction coefficient

(1.1)

(fM is the gravitational parameter of the star, E is a coefficient that characterizes the power of a radiation source, A is the area-mass ratio
of the particle, and � is the reflectivity). For each particle, the reduction coefficient Q has a constant value and characterizes the degree of
susceptibility of the particle to the radiation. The gravitational force of a star has the strongest effect on fairly large and very dense particles
with small values of A and �, and, therefore, Q > 0. For very small particles with a high area-mass ratio and a high reflectivity, the effect of
light exceeds the effect of gravity (Q < 0).

The photogravitational three-body problem, which was introduced by V. V. Radziyevskii2 and provides a way of taking into account the
light repulsion factor in the fundamental problem3 of celestial mechanics, has become a good dynamical model for studying the motion of
microparticles in a system similar to a Sun–planet–particle system, as well as in a repulsive gravitational field of binary star systems.

As in the classical three-body problem,4 to describe the motion of a particle within the photogravitational three-body problem it is con-
venient to use equations in a rotating system of coordinates when Nechvile’s transformation is taken into account. Then the corresponding
function

(1.2)
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(1 − � and � are the dimensionless masses of the principal bodies, � is the true anomaly, e is the eccentricity of the orbit of the principal
bodies, and R1 and R2 are the distances from the particle with the coordinates x, y, z to the principal bodies) contains two reduction
coefficients: Q1 and Q2.1 According to their physical meaning, the numerical values of Q1 and Q2 do not exceed unity, while in the classical
three-body problem Q1 = 1, and Q2 = 1 (there is no emission from the bodies).

The libration points, that is, the constant solutions of the system of dynamical equations adopted, are relative equilibria in the circular
problem and periodic motions in the elliptical problem. They are found from the system of equations

(1.3)

The collinear libration points are located on the straight line connecting the principal bodies. For them y = 0 and z = 0. Their positions on
the x axis are determined from the first equation in system (1.3). The corresponding equation for calculating the x coordinate of a collinear
libration point has the form

(1.4)

Equation (1.4) contains the parameters �, Q1 and Q2, which are mutually independent in the mathematical statement of the problem.
Therefore, the photogravitational problem under consideration admits of a three-parameter family of collinear libration points. Conse-
quently, we obtain a stability problem in a three-dimensional parametric space. When we change to the elliptical problem, the number of
parameters increases to four.

Below we will solve the problem of finding generalized parameters for analysing the stability of collinear libration points that are such
that the dimension of the parameter space would be minimal and the information about the stability would still be adequate. The results of
the investigation are stability diagrams constructed in the (a, e) plane (a is a certain generalized parameter), which give such information
regarding the stability of the collinear libration points at once for all values of the parameters of the problem. The distribution of the
inner libration points located between the principal bodies on the x axis is also obtained, and a simple method for finding all the collinear
libration points of a particle with specified reduction coefficients is given.

It should be noted that the stability problem will be solved below in the linear approximation.

2. Location of the collinear libration points

We next consider the case in which both components of the binary star emit radiation.
From the expression for the reduction coefficient (1.1) it follows that the relation which holds for the components of a binary star has

the form5

(2.1)

in which the parameter C = E2/E1 characterizes the ratio between the radiated powers of the components, and the coefficient K takes positive
values. The expression on the right-hand side of equality (2.1) depends only on the parameters of the binary star. For a specific binary star
system the coefficient K is equal to the known number K*; therefore, equality (2.1) relates the reduction coefficients Q1 and Q2 linerly.

From the foregoing we find that for a given binary star system Eq. (1.4), which specifies the libration points, contains only one parameter,
which can chosen to be either Q1 or Q2. Therefore, the collinear libration points form one-parameter families.

Instead of the reduction coefficient Q, it is sometimes convenient to use the number q = 1 − Q, which is equal to the ratio of the light
pressure force to the gravitational attraction force. We write the form of Eq. (1.4) that will specify the collinear libration points using the
coefficients q1 and q2, which are negative in physical problems (and positive in the case of emission from both components). Then, taking
an interest only in the inner collinear libration points and taking into account the equality q2 = Kq1, we obtain

(2.2)

The function f0(x) is well-known from the classical three-body problem:3 the equation f0(x) = 0 specifies a single inner collinear libration
point, whose coordinate is denoted here by x*. In the interval –� < x < x* the function f0(x) is negative, and in the interval x* < x < 1 − � it is
positive.

The single null of the function g(x) equals

Here g(x) > 0 if x < x**, and g(x) < 0 if x > x**.
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In the case of a binary star, we have q1 > 0. Therefore, Eq. (2.2) has roots in ranges that do not contain the interval (x*, x**) if x** > x*
and do not contain the interval (x**, x*) in the case when x* > x**. Note that in the case of x* = x**, we obtain q1 = 0 (the body does not emit
radiation).

Now we take any number x that lies in the interval (–�, 1 − �) but does not belong to the excluded interval, and we calculate the value
of q1, which is found to be positive. Proceeding in this manner, we obtain all the libration points and the corresponding values of q1. Then,
from the graph of the function

(2.3)

it follows that q1 ∈ (0, +∞).
The discussion takes into account the presence of the parameters � and C, which characterize a binary star system. Therefore, we obtain

the following assertion.
Theorem. The inner collinear libration points of the photogravitational three-body problem in the case of two emitting bodies fill the

entire interval (–�, 1 − �) between the principal bodies except the interval between the points x* and x**. The values of the reduction
coefficients of the particle that correspond to the collinear libration points are found from relation (2.3).

Remarks. 1◦. In the case of emission from only one body, K = 0 must be taken in relation (2.2), the theorem remains valid, and only the
collinear libration points fill the entire interval between the principal bodies.

2◦. The case of collinear libration points located outside the interval (–�, 1 − �) can be analysed in a similar manner.
From the above discussion we obtain a very simple method for finding all the inner collinear libration points. Here there is no need to

solve Eq. (1.4), all the collinear libration points are already known, and all that remains is to use formula (2.3) to find the corresponding
reduction coefficients of the particle: Q1 = 1 – q1 and Q2 = 1 − Kq1.

Another aspect of the problem relates to the number of collinear libration points that have the same reduction coefficients. Such a
statement of the problem for determining libration points inherits the traditions of the investigation of the classical three-body problem.

Suppose Q1 and Q2 are specified. Then it is known6 that there are three collinear libration points (L1, L2 and L3) in the case of positive
reduction coefficients. When Q1 and Q2 are negative, the outer libration points L2 and L3 vanish, and two more inner collinear libration
points appear. When Q1 and Q2 are negative, the collinear libration points are denoted by L11, L12 and L13, If the reduction coefficient of
one of the components of a binary star is positive and the other has a negative reduction coefficient, the collinear libration point that is
outer relative to the component with a reduction coefficient greater than zero is absent.6

For a specified binary star system (when the parameters � and K are specified), from the graph of the function q1(x) we quickly obtain
not only the distribution of all the inner collinear libration points along x, but also their number and coordinates for fixed q1. For this it is
sufficient to draw the straight line q1 = const in the (x, q1) plane and to find the points of intersection of the graph of q1(x) with the straight
line. The intersection points give the collinear libration points required.

3. Stability diagrams

It seemed7,8 that collinear libration points inherit the property of instability that occurs in the classical three-body problem. This
conclusion was contested, and the possibility of the stability of an inner collinear libration point when Q1 and Q2 are positive was
demonstrated.9 In addition, a collinear libration point can also be stable when the reduction coefficients are negative,10 and stability
regions were constructed10 in the circular problem in the (Q1Q2) plane with fixed values of the mass parameter �. It was found that the
inner collinear libration point will be stable.

The investigations in Refs 7–10 were performed for the circular problem using the conventional approach for the three-body problem:
the positions of the libration points were determined for fixed values of the parameters �, Q1 and Q2, and then stable (unstable) solutions
were found. The problems arising with the dimension of the parametric space were overcome by indicating the algorithm for constructing
the stability region for a fixed value of the mass parameter �. Subsequently,11 an approach with a transition to phase space, which proved
itself in the investigation of triangular libration points,12 was applied to the problem of the stability of collinear libration points. Taking
into account the fact that for each fixed pair of principal bodies the reduction coefficients of the particle (Q1 and Q2) are related by a definite
linear relationship5 makes renders the parametric space two-dimensional.

The stability has previously been investigated in the elliptical problem.13–17 The non-linear problem was considered,14 but results were
given only for special values of the parameters (Q1 = Q2 = Q, Q = 1, 0.98, 0.95). The weakly elliptical problem was investigated,15 and results
from the numerical construction of the stability regions were presented.13,16,17

The starting point for obtaining stability diagrams was Ref. 15, where, firstly, it was shown (for Q1,2 > 0) that parametric resonance is
the only factor that leads to instability of the collinear libration points in the weakly elliptical problem and, secondly, the investigation was
performed using the generalized parameter

(3.1)

The parameter a naturally appears initially in the problem of determining the number of inner collinear libration points for fixed Q1,2.
In fact, from expression (1.4) we obtain f’(x) = 1 + 2a(x). Therefore, for example, in the case of Q1,2 > 0, we hence quickly derive the existence
of only one inner collinear libration point. It turns out15 that the variational equations for the collinear libration points contain only the
one parameter a:

(3.2)
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A formal mathematical investigation of the stability of the zero solution of system (3.2) in the (a,e) parameter plane was previously
peformed.17 However, the legitimate question of whether the real stable collinear libration point in the photogravitational three-body
problem corresponds to a stable point in the (a,e) plane and whether, conversely, each stable collinear libration point has a corresponding
stable point in the (a,e) plane arises. We can speak about a stability diagram in the (a,e) plane only after there is an answer to this question.

System (3.2) is reversible, as is shown by the invariance of the system to the substitution (X,Y) → (X,–Y). Therefore, the corresponding
theory for reversible mechanical systems, particularly the theory of parametric resonance,18 will be used in the subsequent treatment.

In the circular problem the characteristic equation of system (3.2) has the form

(3.3)

and its roots are:

An elementary analysis shows that in the intervals 8/9 < a ≤ 1 and –1/2 < a ≤ 0 the roots �� are pure imaginary (on the boundaries they
are multiple); therefore, these values of the parameter a belong to the region of necessary conditions for stability.

When the values of the parameters are small, instability zones may appear in the stability region as a consequence of parametric
resonance. The pure imaginary roots of Eq. (3.3) then satisfy either of the conditions

We will use a* to denote the values of the parameter a at which the resonance condition is satisfied. Then, in the interval 8/9 < a ≤ 1
there is one single-frequency parametric resonance

and in the interval –1/2 < a ≤ 0 there are two such parametric resonances

In the latter interval there is also a two-frequency resonance

The parametric resonances revealed are the only fact which leads to the conclusion that in the weakly elliptical problem the inner
collinear libration points are stable if a /= a*. Explicit formulae for the coefficient that gives instability for single-frequency parametric
resonance were previously obtained.15

The stability regions of system (3.2) were constructed numerically for values of the eccentricity e > 0. They are shown shaded in Fig. 1
(the diagram on the left corresponds to the case in which gravitation predominates, and the diagram on the right corresponds to the case

Fig. 1.
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in which repulsion predominates). Instability “wedges,” which border on the horizontal axis and are caused by parametric resonances,
are seen. When Q1,2 > 0, the single wedge corresponds to the resonance at 2�1 = i.15 In the case when Q1 < 0, Q2 < 0, the single-frequency
resonances at 2�1 = i and 2�1 = 3i correspond to the narrow instability wedges on the diagram, while the two-frequency resonance at
–�1 + �2 = i produces the broad instability region that borders on the horizontal axis at a = –1/3.

According to the theorem proved in Section 2, the inner collinear libration points fill the entire gap (–�, 1 − �) between the principal
bodies except the interval between the points x* and x**, and the values of the coefficient q1 (q2 = Kq1) corresponding to them are found
using formula (2.3). Therefore, after specifying the coordinate of a collinear libration point, we calculate the generalized parameter a using
formula (3.1). Then we single out the collinear libration points that are stable to the parameter a by numerically solving the Cauchy problem
for system (3.2). As a result, we obtain the stable collinear libration points in the phase space.

The set of values of q1 for the collinear libration points fill the positive semiaxis. This fact does not depend on the specific values of the
parameters � and K of the binary star system. Since q1 ∈ (0, + ∞), Q1 and Q2 take all possible values in the interval (–∞, 1). We also take
into account that the values of the x coordinate of the collinear libration points in formula (3.1) belong to the intervals indicated in the
theorem proved in Section 2. Therefore, from expression (3.1) we find that the values of the parameter a cover the entire numerical axis,
regardless of the values of � and K chosen. Then the stable collinear libration points identified using the parameter a are also maintained
when � and K are varied, since system (3.2), which does not depend on � and K, is used to find them. The required substitution of specific
numerical values of � and K is used to determine the coordinates of the stable collinear libration points in the phase space.

The discussions have been conducted for a fixed eccentricity e of the orbit; therefore, we will vary e and construct the stability regions
already in the (a, e) plane.

Thus, the stability regions shown in Fig. 1 provide complete information on the stable collinear libration points of a binary star system,
regardless of the specific parameters of the system.

We will use the stability diagrams shown in Fig. 1 to resolve the question of the existence of clusters of microparticles (clouds) and to
evaluate their diameter and their distances from the components of a binary star for which the eccentricity of the orbit, the masses of the
components, and the radiated power of their light are known. However, an analysis of the diagrams immediately enables us to arrive at
the unexpected qualitative conclusion that there are several clouds and even enables us to determine their number precisely.

In fact, it can be seen that when the components of the binary star move in a circular orbit, there are only two clouds: one at Q1 > 0,
Q2 > 0 (the left-hand part of the figure), and the other at Q1 < 0, Q2 < 0 (the right-hand part). When the star moves to a weakly elliptical
orbit, regions that do not contain “stable” particles appear on each diagram, and the cloud is thereby divided into two clouds (the left-hand
part of the figure) or four clouds (the right-hand part). This is revealed, if the straight line e = const < < 1 is drawn on the diagram. Similar
straight lines corresponding to e = const (for specific values of e) that have segments in the shaded regions give the number of clouds for a
specific value of e.

It follows from the diagram in the left-hand part of the figure that the scenario of cloud formation in the case when Q1 > 0, Q2 > 0 is fairly
simple. At first, for e = 0 we have one cloud, which divides into two clouds on passing into the region e > 0. These clouds exist up to a certain
value e = 0.44255. . ., and when e is increased further, the left-hand cloud vanishes, and only one cloud remains. The parallel scenario is
more complicated in the case when Q1 < 0, Q2 < 0 (the right-hand part of the figure). Here the number of clouds increases from one to four
and then decreases to one as e increases.

4. Calculations for the binary star system �-Centauri

We will use the stability diagram to determine the characteristics of clusters of microparticles in a binary star system whose charac-
teristics are similar to the characteristics of the binary star �-Centauri. This system contains two components that are similar to the Sun.
Their masses are M1 = 0.907 MS and M2 = 1.095 MS, and they have radiation powers E1 = 1.56LS and E2 = 0.5LS, respectively (MS and LS are the
mass and radiation power of the Sun). The components revolve about the centre of mass in elliptical orbits with eccentricity e = 0.519. . ..

We calculate the values of the parameters assumed here:

Next, we use the stability diagrams (Fig. 1), and for e = 0519. . . we find the gaps a that correspond to stable libration points. These points
form two sets, i.e., clusters. For the first cluster, which is formed by the stable collinear libration points L1 we have a ∈ [0.9847. . ., 1], Q1 > 0,
Q2 > 0, and for the second cluster, which is formed by the stable points L12, we obtain a ∈ [–0.14047. . ., 0].

We determine the x coordinates of the points L1 and L12 on the phase plane by solving Eq. (1.4). For this purpose, we use expression
(3.1) and take into account formula (2.1) to find the value of Q1 as a function of x and the parameters �, C and a, and we substitute this
value into Eq. (1.4). As a result, we obtain a seventh-order polynomial in x, whose roots we find for each fixed value of a and the values of
� and C corresponding to the �-Centauri system.

As a result, we obtain the characteristics of the hypothetical clusters (clouds) in the �–Centauri system presented in Table 1. The left-
hand (x(1)) and right-hand (x(2)) boundaries of each cluster along the x coordinate, the diameter D of the cluster, and the distance R2 from
the cluster to the second principal body are given here. All the linear dimensions are given in kilometres after Nechvile’s transformation is
taken into account. The distance between the two clouds is equal to 125.96 × 106 km.

Particles with different characteristics can be found at a stable collinear libration point of a binary star. In fact, for a specified value of
the eccentricity e from the stability region, we can find the values of the parameter a that correspond to stability, and we can calculate the

Table 1

CLP x(1) x(2) D·10−6 R2·10−6

L1 0.44932. . . 0.45013. . . 2.87414. . . 205.95. . .
L12 0.48566. . . 0.48886. . . 11.37762. . . 343.29. . .
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x coordinate of the point L1 or L12. According to formula (2.2), this value of x corresponds to the fully specified reduction coefficient q1.
Then substituting Q = Q1 = 1 – q1 into formula (1.1), we find that the particles located at a stable collinear libration point obey the inverse
proportionality law A = k/(1 + �), where k = const. The formula A = 3/(4��r) is valid for a homogenous particle of radius r and density �.

When the data presented in Table 1 are taken into account, the possibility of finding a particle with different characteristics at a specific
stable collinear libration point and the fact that the parameter a belongs to the stability region for the entire set of stable collinear libration
points indicate that gigantic stable heterogeneous ensembles of material (clouds) can form in a binary star system.

This paper was prepared using material from a lecture presented at the International Memorial Conference in Memory of V. V. Rumyant-
sev (Moscow, 3-6 June 2008).
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